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Abstract

The onset of vortex instability in primary laminar natural convection ¯ow over an inclined plate embedded in a

porous medium was analyzed. Forchheimer's model involving thermal dispersion was used to examine inertia e�ects
on the onset of vortex instability. By employing the propagation theory we have developed, the critical streamwise
position to mark the onset of stationary longitudinal vortex rolls was predicted. The predicted stability criteria were
compared well in the range of 258RgR608 with experiments of ionic mass transfer in aqueous CuSO4 solution

systems. Also, new mass transfer correlations of ShL were suggested for 08RgR608 and RaLR7000: 7 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well-known that a ¯uid layer becomes unstable
when buoyancy forces accompanied by heat or mass
transfer overcome dissipative forces of di�usion and
viscosity. The convective motion driven by buoyancy

forces in an initially quiescent ¯uid layer has been ana-
lyzed extensively since Benard's [1] systematic exper-
iments and Lord Rayleigh's [2] theoretical analysis

were reported. Similar to this convective motion, sec-
ondary motion in the form of longitudinal vortex rolls
can set in due to buoyancy forces in primary natural

convection over inclined surfaces heated from below.
The related experimental evidence was reported ®rst by

Sparrow and Husar [3]. Subsequent experimental in-

vestigations by Lloyd and Sparrow [4] clearly showed
that for inclined angles in excess of 178 relative to the
vertical, the instability is characterized by longitudinal

vortices. These experimental observations have
prompted a number of theoretical studies on the onset
of longitudinal vortex rolls in natural convection ¯ow
over inclined surfaces. Linear stability analyses were

performed by Hwang and Cheng [5], Haaland and
Sparrow [6], Chen and Tzuoo [7] and Hwang et al. [8]
for pure ¯uid layers. This roll-type instability is

encountered in various processing systems such as heat
exchangers, electroplating and chemical vapor depo-
sition. Most of these processes involve non-linear,

developing temperature or concentration pro®les and
therefore it becomes an important problem to predict
when or where the instability sets in.

The buoyancy-induced motion in a ¯uid layer
through a permeable material is also an important
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mechanism of transport. Cheng and Minkowycz [9]

presented a similarity analysis for a vertical ¯at

plate embedded in a ¯uid-saturated porous medium.

For an inclined surface Hsu and Cheng [10] showed

that, in the basic laminar-¯ow analysis, the bound-

ary layer ¯ow over an inclined heated plate can be

approximated by the similarity solutions for a verti-

cal plate and then the vortex instability was ana-

lyzed. Jang and Chang [11] re-examined the

analyses. All of these investigations are based on

the Darcy ¯ow. However at high ¯ow rates or in

porous media of high permeability, there is a depar-

ture from Darcy's law and the inertia e�ects

become signi®cant. To study laminar natural convec-

tion from a vertical plate embedded in a porous

medium the Forchheimer equation was used ®rst by

Plumb and Huenefeld [12]. The inertia e�ects on

the vortex mode of instability of secondary natural

convection ¯ow in a porous medium were examined

®rst by Chang and Jang [13]. They showed that the

inertia e�ects make the system more unstable in a

horizontal system. But their interpretation on the

Forchheimer equation is found to be incorrect,

which will be discussed later. Therefore it may be

stated that the stability analysis, using the Forchhei-

mer equation properly, on the vortex mode of

instability of buoyancy-induced boundary layer ¯ow

in a porous medium has not been investigated. In

the case when inertia e�ects are prevalent, the

transverse thermal dispersion e�ect is expected to

become important. Plumb [14] studied this dis-

persion e�ect on buoyancy-induced boundary layers

from a vertical plate embedded in a porous med-

ium. Hong et al. [15] examined analytically the no-

slip e�ect and the inhomogeneity in permeability

and porosity as well as the inertia and dispersion

e�ects for the same system. Based on these studies,

the stability criteria of buoyancy-induced boundary-

layer ¯ow over an inclined plate embedded in a

porous medium will be examined by considering

both inertia and dispersion e�ects.

The foregoing problems in heat transfer can be

applied to the similar mass transfer systems. To comp-

lement the reported predictions, experimental results of

copper electroplating in aqueous copper sulfate sol-

ution are also reported.

Nomenclature

a dimensional spanwise wave number
A coe�cient in Eq. (49)
~a dimensionless wave number

a� dimensionless wave number based on length
scaling factor ~x1=2, ~a ~x1=2

b Forchheimer constant

B transverse thermal dispersion constant
D0 e�ective molecular mass di�usivity
dp particle diameter

f dimensionless base-state stream function
g gravitational acceleration constant
Gr Grashof number, gbbK 2DT=n2 or gbK 2Dr=

�n2rb�
hx local heat or mass transfer coe�cient
hL average h-value over plate length L
K permeability

k0 e�ective molecular thermal conductivity
L plate length
Nux local Nusselt number, hxx=k0
Rad Darcy±Rayleigh number based on dp

RaL Darcy±Rayleigh number, gbKDTL=�a0n� or
gKLDr=�D0nrb�

Rax local Darcy±Rayleigh number based on x
Rep Reynolds number having the length scale

dp, uavgdp=n
ShL average Sherwood number, hLL=D0

t time

u, v, w velocities in x-, y- and z-direction
x, y, z axial, spanwise and normal coordinate

Greek symbols
a0 e�ective molecular thermal di�usivity
aT e�ective thermal dispersion coe�cient

dT dimensionless thermal boundary-layer thick-
ness, DTRa

1=2
L =�zTL�

DT dimensional thermal boundary-layer thick-

ness, zTx=Ra
1=2
x

e porosity
g inclination angle with respect to vertical
y dimensionless temperature

c base-state stream function
z similarity variable, �Rax cos g�1=2z=x or

Ra
1=2
x z=x

zT z-value where y0 has a value 0.01

Subscripts

b bulk state
c critical values
0 basic undisturbed quantities

1 disturbed quantities

Overbars
± modi®ed parameters involving cos g
~ dimensionless velocity or coordinates
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2. Stability analysis

2.1. Basic-state ¯ow and temperature ®elds

The system considered here is a ¯uid-saturated por-
ous medium as is shown in Fig. 1. A Cartesian frame
of reference is chosen where the x-axis is aligned with
a ¯at plate with an inclination angle g with respect to

the vertical, the y-axis is in the spanwise direction and
the z-axis is perpendicular to the plate. The ambient
temperature of the porous medium is uniform at T1
and the wall temperature is kept at a higher value Tw:
Under this condition primary steady laminar natural
convection prevails and its velocity ®elds consist of u0
and w0. In this ®gure DT denotes the thermal bound-
ary-layer thickness. The following conventional
assumptions simplify the analysis [10±14]: the ¯uid and

the porous medium are in local thermal equilibrium,
the porous medium is everywhere isotropic and homo-
geneous, the Boussinesq approximation is valid and
Forchheimer's model is used for the momentum

equations. Now, the following dimensionless variables
are introduced:

z � z

x
�Rax cos g�1=2 �1�

c � a0�Rax cos g�1=2f�z� �2�

y0�z� � T0 ÿ T1
Tw ÿ T1

�3�

where Rax is the Darcy±Rayleigh number de®ned as

Rax � gbK�Tw ÿ T1�x
a0n

: �4�

z denotes the similarity variable based on the thermal
boundary-layer thickness DT having the order of mag-

nitude x�Rax cos g�ÿ1=2, c the stream function, f �z� the
dimensionless stream function, y0�z� the dimensionless

temperature, g the gravitational acceleration constant,
b the thermal expansion coe�cient, n the kinematic
viscosity of ¯uid, and a0 the e�ective molecular ther-

mal di�usivity. The permeability K is expressed in
terms of the particle diameter dp and the porosity e as

K � e3

150�1ÿ e�2
d 2

p: �5�

With the above de®nitions, the dimensionless basic
state temperature and velocity pro®les for 08RgR608
can be represented, based on the work of Hsu and

Cheng [10] and Plumb [14], asÿ
1� Grf 0

�
f 0 ÿ y0 � 0 �6�

ÿ
1� �BRadf

0�y 000 � �12 f� �BRadf
00
�
y 00 � 0 �7�

subject to the boundary conditions:

f�0� � 0, y0�0� � 1, f 0�1� � 0, y0�1� � 0 �8�

where �B � B cos g and Rad�gbK�TwÿT1�dp=a0n: B is
a dispersion constant. Plumb [14] assumed that the
thermal dispersion coe�cient aT due to transverse ther-
mal dispersion would be proportional to the dominant

velocity components, i.e., aT � Bdpu0: This is sym-
bolized by �BRadf

00 in Eq. (7). The primes on the basic
undisturbed quantities indicate derivatives with respect

to z: Gr is a modi®ed Grashof number de®ned as

Gr � Gr cos g � gbbK 2�Tw ÿ T1�
n2

cos g �9�

which represents the relative importance of inertia
e�ects, based on the streamwise component of gravity.

The Forchheimer constant b is given by

b � 1:75�1ÿ e�
e3dp

: �10�

As b4 0 and B4 0, Eqs. (6)±(8) reduce to Darcian

case. This limiting one was analyzed by Hsu and
Cheng [10]. The similarity solutions given by Eqs. (6)±
(8) are obtained based on the boundary layer approxi-
mation but they are not valid for g > 608: From Eqs.

(2), (6) and (7) the velocity components and the local
Nusselt number for the basic undisturbed ¯ow are
given as

u0 � a0
x
�Rax cos g�f 0 �11�Fig. 1. Schematic diagram of the heat transfer system con-

sidered here.
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w0 � a0
2x
�Rax cos g�1=2ÿzf 0 ÿ f

� �12�

Nux � ÿ
�
1� �BRadf

0�0�
�
y 00�0��Rax cos g�1=2: �13�

2.2. Disturbance equations

By following the well-known linear stability analysis,
the variables in the ¯ow and temperature ®elds are
decomposed into the basic undisturbed quantities and

their in®nitesimal disturbances as

T�x, y, z, t� � T0�x, z� � T1�x, y, z, t�

p�x, y, z, t� � p0�x, z� � p1�x, y, z, t�

u�x, y, z, t� � u0�x, z� � u1�x, y, z, t�

v�x, y, z, t� � v1�x, y, z, t�

w�x, y, z, t� � w0�x, z� � w1�x, y, z, t� �14�

where the three-dimensional (3D) disturbances are

denoted by the subscript `1' and the two-dimensional
(2D) basic undisturbed quantities by the subscript `0'. t
represents time.

The disturbances are assumed to be periodic hori-
zontally under the normal mode analysis. For example,
the vertical velocity disturbance w1 can be described as

w1�x, y, z, t� � w�1�x, y, z�exp
�
i�axx� ayy� � st

� �15�

where i denotes the imaginary number, ax the stream-

wise periodic wave number, ay the spanwise periodic
one, and s the temporal growth rate. It is worth noting
that ax, ay and s are all real for regular vortex disturb-

ances and s � 0 for neutral stability. With s � 0 the
disturbances are assumed to be functions of space vari-
ables alone. Now, after substituting Eq. (14) into the
governing equations for the 3D convective ¯ow in a

porous medium, the following linearized disturbance
equations are obtained:

@u1
@x
� @v1
@y
� @w1

@z
� 0 �16�

�
n
K
� bju0j

�
u1 � ÿ 1

r1

@p1
@x
� gb cos gT1 �17�

�
n
K
� bju0j

�
v1 � ÿ 1

r1

@p1
@y

�18�

�
n
K
� bju0j

�
w1 � ÿ 1

r1

@p1
@z
� gb sin gT1 �19�

u0
@T1

@x
� u1

@T0

@x
� w0

@T1

@z
� w1

@T0

@z

� a0

 
@ 2T1

@x 2
� @

2T1

@y2
� @

2T1

@z2

!
� Bdp

@

@z

�
u0
@T1

@z

� u1
@T0

@z

�
�20�

where r1 denotes bulk ¯uid density and
ju0j � lb � ����������������

u20 � w2
0

p
: The term Bdpu represents the

thermal dispersion. Hsu and Cheng [10] neglected the

terms @u1=@x, @p1=@x and @ 2T1=@x
2 in Eqs. (16), (17)

and (20) and most of the early studies on this kind of
stability problems have employed this assumption. But

in the present study the term @u1=@x is retained.

2.3. Propagation theory

The propagation theory employed to ®nd the critical
streamwise position `x c' to mark the onset of longi-

tudinal vortex is based on the assumption that disturb-
ances are propagated mainly within the thermal
boundary-layer thickness DT at x c � DT: In this case it

is assumed that the following scale analysis at x � x c

would be valid for disturbed quantities of Eqs. (19)
and (20), respectively:

n
K
w10gb sin gT1 �21�

w1
@T0

@z
0a0

T1

D2
T

: �22�

From relations (21) and (22) the following peculiar re-
lations are obtained:

w10
gbK sin g

n
T1 �23�

@T0

@z
0 a0n

gbK sin gD2
T

� DT

DT

�
gbKDTDT sin g

a0n

�ÿ1

� DT

DT

ÿ
RaDT

tan g
�ÿ1 �24�

where RaDT
is the modi®ed Darcy±Rayleigh number

having the length scale DT: RaL having the length scale

L is interrelated with RaDT
as

RaDT
� RaL

DT

L
�25�

where L is the characteristic streamwise length, usually
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the plate length. Now, RaDT
is assumed to be a con-

stant at x � x c for a given g and L. Then, the follow-

ing relation is obtained:

DT0
�

gbK sin g
a0n

DT

�ÿ1

�26�

which means that both the critical position x c and the

corresponding DT decrease with increasing DT since
DTDT � constant in Eq. (26).
From the above relations, Eqs. (21) and (22) are

nondimensionalized as

~w1

dT

0y1 �27�

RaL tan2 g ~w1
@y0
@ ~z

0 y1
d2T

�28�

where dT is the dimensionless thermal boundary-layer

thickness de®ned as DT=DT, L and it has the order of
magnitude of �x=L�1=2: DT, L denotes the thermal
boundary-layer thickness at x � L: ~w1 denotes the

dimensionless velocity disturbance in the z-direction
and ~z the dimensionless vertical distance. These are
de®ned below. The dimensionless temperature disturb-
ance y1 is de®ned as gbKL sin g tan gT1=�a0n�: dT in re-

lation (27) is produced when DT in RaL is replaced
with the right-hand side term of relation (26). Re-
lations (27) and (28) are similar to those of Hsu and

Cheng [10] but the term RaL appears in relation (28)
because of their di�erent nondimensionalization of dis-
turbed quantities. Relations (27) and (28) mean that

the secondary longitudinal vortex occurs due to y1 and
the incipient secondary ¯ow is very weak at x � x c: In
this viewpoint the basic state temperature and its dis-

turbance have been nondimensionalized having di�er-
ent scales. Similar treatments can be found in thermal
instability analyses by Hwang and Choi [16], Kang
and Choi [17] and Kim et al. [18,19].

Now, on the basis of the scales of the thermal
boundary-layer thickness and the basic state velocity,
the following dimensionless variables are de®ned:

ÿ
~x, ~y, ~z

� � 1

L

�
x, Ra

1=2
L y, Ra

1=2
L z

�
�29�

� ~u0, ~w0 � � L

a0RaL

�
u0, Ra

1=2
L w0

�
�30�

� ~u1, ~v1, ~w1 � � L

a0RaL

�
u1, Ra

1=2
L v1, Ra

1=2
L w1

�
�31�

~p1 �
K

ma0
p1: �32�

Then the disturbance equations are represented under
the usual boundary-layer theory, i.e. @ ~p1=@ ~x�@ 2y1=@ ~x2

�0 by the following dimensionless equations:

@ ~u1
@ ~x
� @ ~v1
@ ~y
� @ ~w1

@ ~z
� 0 �33�

ÿ
1� Grj Äu0j

�
~u1 � y1

RaL tan2 g
�34�

ÿ
1� Grj Äu0j

�
~v1 � ÿ@ ~p1

@ ~y
�35�

ÿ
1� Grj Äu0j

�
~w1 � ÿ@ ~p1

@ ~z
� y1

Ra
1=2
L tan g

�36�

~u0
@y1
@ ~x
� ~w0

@y1
@ ~z
� RaL tan2 g

�
~u1
@y0
@ ~x
� ~w1

@y0
@ ~z

�

� @ 2y1
@ ~y2
� @

2y1
@ ~z2
� �BRad

@

@ ~z

�
~u0
@y1
@ ~z

� RaLtan2 g ~u1
@y0
@ ~z

�
�37�

with the boundary conditions,

~u1 � ~v1 � ~w1 � y1 � 0 for z � 0 and z41 �38�

where z � ~z= ~x1=2, ~u0 � f 0, ~w0 � �zf 0 ÿ f �=�2 ~x1=2� and
j Äu0j � � ~u20 � Ra

ÿ1
L ~w2

0�1=2: z, ~u0 and ~w0 are nondimen-

sionalized forms of Eqs. (1), (11) and (12), respectively.
We assume that steady disturbance quantities are peri-
odic with the wave number a in the spanwise y-direc-

tion. This means that in Eq. (15) w�1�w�1�x, z�, ax� 0,
ay�a and s � 0:
Since the present analysis involves the x-dependence,

the incipient disturbances will experience the spatial
growth. The scale analyses on ~u1, ~v1 and ~p1 are con-
ducted like that of ~w1, as is illustrated through Eqs.

(21)±(28). Then for the regular longitudinal vortex
rolls the dimensionless disturbance quantities are
expressed as2666664

~u1
ÿ

~x, ~y, ~z
�

~v1
ÿ

~x, ~y, ~z
�

~w1

ÿ
~x, ~y, ~z

�
~p1
ÿ

~x, ~y, ~z
�

y1
ÿ

~x, ~y, ~z
�

3777775 �
266664

~x u��z�
1= ~a v��z�
~x1=2 w��z�
~x p��z�

y��z�

377775exp
ÿ
i ~a ~y
� �39�

which satis®es Eqs. (33)±(37). ~a denotes the dimension-
less wave number �� aL=Ra

1=2
L ]. It is stressed that dT
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has the order of magnitude of ~x1=2 and the resulting
continuity equation is a function of z alone. Since dT

or ~x is small, the relation of j ~u1j < j ~w1j is kept but
j@ ~u1=@ ~xj has the same order of magnitude as j@ ~w1=@ ~zj:
Thus in the continuity equation, the term @ ~u1=@ ~x is

retained. This is the major di�erence between the
propagation theory and the models of Hsu and Cheng
[10] and Jang and Chang [11]. The relation of ~v1 �
v��z�= ~a is a peculiar one we have suggested [16±19] and
it is believed that this makes the resulting continuity
equation more reasonable.

Substituting Eq. (39) into Eqs. (33)±(38) and elimi-
nating v� and p�, we can obtain the new stability
equations:

ÿ
1� Grj Äu0j

�
u� � y�

Rax tan2 g
�40�

ÿ
1� Grj Äu0j

�ÿ
D2 ÿ a�

2
�
w�

� 1

2

ÿ
1� Grj Äu0j

�ÿ
zD2u� ÿDu�

�
�
ÿ
GrDj Äu0j

�
�
�
z
2
Du� ÿ u� ÿDw�

�
ÿ a�

2

y�

Ra
1=2
x tan g

�41�

ÿ
1� �BRadf

0�D2y� ÿ a�
2

y�

� ÿ
�
1

2
f� �BRadf

00
�
Dy�

ÿ �BRadRax tan2 gu�D2y0 � Rax tan2 g

�
w�

ÿ z
2
u� ÿ �BRadDu�

�
Dy0

�42�

with the following boundary conditions:

w� � y� � 0 for z � 0 and z41 �43�

where D � d=dz, j Äu0j2 � f 02 � �zf 0 ÿ f �2�4Rax�ÿ1, a� �
~x1=2 ~a and Rax � ~xRaL: The above transformations are

possible since @ ���=@ ~x�ÿ�1=2��z= ~x�@ ���=@z and nondi-
mensionalization of the energy equation produces the
term RaL tan2 g Äu1 � ry0 shown in Eq. (37). Also, it is
noted that relations (24) and (28) are reasonable since

Rax0�RaDT
�2: The parameters a� and Rax based on

the length scaling factor ~x1=2 are assumed to be eigen-
values. Since y0, f, u�, w� and y� in Eqs. (40)±(43) are

functions of z alone, treatment like a set of similarity
transformation is possible. Now, the minimum value
of Rax tan2 g for a given set of Gr, �BRad and g is

sought. In other words, the minimum value of ~x, i.e.
~xc, is found for a given set of RaL tan2 g, Gr, �BRad and
g: It is stressed that the whole procedure described

above is the essence of the propagation theory we have
developed. The propagation theory may be regarded as

an extension of local stability analyses.

2.4. Solution method

In order to obtain the stability criteria, the basic
state ¯ow and temperature pro®les must be obtained
from Eqs. (6)±(8), a priori. For this purpose the shoot-

ing method was employed to solve the two-point
boundary-value problem. The implicit sti� method was
used for the integration of the base ¯ow equations and
the iteration was carried out until the error at the

upper boundary was less than 10ÿ10 by employing the
Newton±Raphson method. By this procedure the
lower boundary condition of the primary ¯ow was

determined.
The disturbance equations were calculated by using

the procedure similar to that for the base-¯ow

equations. Eqs. (40)±(43) were solved by employing the
outward shooting scheme of Chen and Chen [20]. In
order to integrate these stability equations, the known
lower boundary conditions of the basic-state equations,

i.e. f 0�0� and y 00�0� were read and the proper values of
Dw� and Dy� at z � 0 were assumed for a given Gr,
�BRad, g and a�: Since the stability equations and the

boundary conditions are all homogeneous, the value of
Dw� at z � 0 can be assigned arbitrarily and the value
of the parameter Rax tan2 g is assumed. This procedure

can be understood easily by taking into account the
characteristics of eigenvalue problems. After all the
values at z � 0 are provided, this eigenvalue problem

can be proceeded numerically.
Integration was performed from the heated surface

z � 0 to a ®ctitious outer boundary with the fourth-
order Runge±Kutta±Gill method. If the guessed values

of Rax tan2 g and Dy��0� are correct, w� and y� will
vanish at the outer boundary. To improve the initial
guesses the Newton±Raphson iteration was used and

relative errors were taken as convergence criteria.
When all the relative errors were less than 10ÿ10, the
outer boundary was increased by a predetermined

value and the above procedure was repeated. Since the
disturbances decay exponentially outside the thermal
boundary-layer, an incremental change in Rax tan2 g
also decays fast with an increase in outer boundary

depth. This behavior enables us to extrapolate the
eigenvalue Rax tan2 g to the in®nite depth. The e�ect of
the integration depth on the critical condition was

treated intensively by Chen [21], Chen et al. [22] and
Kim [23]. They showed that the present extrapolation
by the Shanks transformation [24] is a good approxi-

mation to treat the in®nite outer boundary. The whole
numerical procedure is described in the work of Chen
[21] and Kim [23].
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2.5. Results and comparison

In the present system the dimensionless basic vel-
ocity on the wall f 0�0� and the dimensionless tempera-

ture gradient at the wall y 00�0� are functions of Gr and
�BRad: The results on Nux are shown in Fig. 2. Gr �
B � 0 implies the Darcy ¯ow. The inertia and dis-

persion terms show pronounced e�ects on the heat
transfer for values of Gr > 0:1 and �BRad > 1: The iner-
tia e�ect decreases Nux whereas the thermal dispersion

increases Nux:
The Rax tan2 g- and a�-values obtained from the

present stability equations constitute the neutral stab-

ility curves, as shown in Figs. 3 and 4. The present
minimum Rax tan2 g, i.e. Rax,c tan2 g for the case of
Gr � B � 0 is compared well with those of Hsu and
Cheng [10], as is seen in Table 1. The Rax,c tan2 g-value

for the case of @u1=@x � 0 is nearly equal to that of

@u1=@x 6�0 when Gr is small. As Gr increases, the di�er-
ence becomes larger and therefore, @u1=@x cannot be
neglected. Its value increases with Gr, i.e. inertia e�ects

make the system more stable. This trend is di�erent
from the result by Chang and Jang [13]. Their result
for a horizontal case shows that inertia e�ects make
the system more unstable. But, they used Forchhei-

mer's model improperly. Forchheimer's model has the
inertia term, bjuju: By the linear stability analysis, sub-
stituting Eq. (14) into the governing equations, the

inertia terms are obtained as bju0 � u1j�u0 � u1� and

Fig. 2. Combined e�ects of inertia and thermal dispersion on

local Nusselt number. Fig. 3. Neutral stability curve for Gr � B � 0:

Fig. 4. Neutral stability curves for various Gr-values.

Table 1

Comparison of critical values for B � 0 and g � 408

Gr @u1=@x a�c Rax,c tan2 g

0 Retained 0.662 120.0

Neglected 0.635 120.7

Hsu and Cheng [10] 0.636 120.7

0.1 Retained 0.643 123.2

Neglected 0.619 123.8

1 Retained 0.563 144.9

Neglected 0.543 144.0

10 Retained 0.399 245.7

Neglected 0.381 237.9

100 Retained 0.24 578.6

Neglected 0.225 538.7
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ju0 � u1j1ju0j since disturbed quantities are in®nitesi-

mal. Thus, by subtracting the parts satis®ed by the
basic quantities the inertia terms are obtained as
bju0ju1: This is shown clearly in Eqs. (17)±(19). But

Chang and Jang [13] used bw0w1 in the z-momentum
equation and neglected the inertia term in the y-
momentum equation. Because of their improper treat-
ment of the inertia e�ects, their results are contrary to

ours.
The stability conditions under no dispersion e�ect

are listed for various g-values in Table 2 for

208RgR608: In this g-range the Rax,c tan2 g value is
almost the same for a given Gr: Based on Table 2, the
stability criteria for B � 0 can be well represented with

an error bound of 5% by the following correlations, as
shown in Fig. 5:

Rax,c tan2 g � 120
ÿ
1� 0:311Gr

0:8
�0:625 �44a�

~xc � x c

L
� 120

ÿ
1� 0:311�Gr cos g�0:8

�0:625
�RaL sin g tan g� : �44b�

Eq. (44b) is a transformation of Eq. (44a). The critical
position ~xc to mark the onset of longitudinal vortex

rolls becomes smaller with an increase in RaL and g
and with a decrease in Gr: It is stressed that the
present predictions cover the range of 258RgR608, of
which the reason will be discussed later in comparison
with experimental results.
The thermal dispersion e�ects on the critical con-

ditions for g � 408 are shown in Fig. 6. As expected,
the inertia e�ect of Gr makes the system stable.
Rax,c tan2 g experiences the minimum for GrR1 but for

Gr > 1 it decreases monotonically as �BRad increases.
This means that the dispersion makes the system un-
stable for Gr > 1 but for GrR1 it brings the stabilizing
e�ect over the certain �BRad-value depending on Gr:
Coupled e�ects of both inertia and dispersion (see Eqs.
(6) and (7) and also Fig. 6) seem to be bringing this
peculiar behavior.

The e�ect of the inclination angle g on Rax, c for
�BRad � 1 is shown in Fig. 7. As g increases, the system
becomes more unstable. The in®nite value of Rax, c at

g � 08 implies that the vortex mode of instability will
not manifest itself in natural convection ¯ow over a
vertical surface. In other words, the larger the incli-

nation angle with respect to the vertical, the more sus-
ceptible the steady longitudinal vortex mode of
disturbances is. In the limit of g � 08 the ¯ow is stable
for this form of disturbances. For small inclination

Table 2

Predicted values of Rax,c tan 2 g and a�c for B � 0

Gr g (8) a�c Rax,c tan2 g

0.01 20±60 0.66 120.3

0.1 20±60 0.643 123.2

1 20±40 0.563 144.9

50 0.563 145.1

60 0.563 145.4

10 20±30 0.399 245.4

40 0.399 245.7

50 0.399 246.0

60 0.4 246.9

100 20±30 0.24 578.1

40 0.24 578.6

50 0.24 580.0

60 0.241 583.5

Fig. 5. E�ects of Gr on stability condition for B � 0: Fig. 6. Dispersion e�ects on stability condition for g � 408:
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angles the instability will be characterized by the T±S
(Tollmien±Schlichting) wave instability. The present
predictions for Gr � B � 0 are also compared with

those of Jang and Chang [11] in Fig. 7. For small g,
their results show good agreement with the present
ones but for large g their predictions are slightly

higher. This di�erence comes from the analysis for the
undisturbed ¯ow. Their analysis does not admit simi-
larity solutions for the basic ¯ow and neglects the term

@u1=@x in the continuity equation for the disturbed
state. To support the present predictions the ionic
mass transfer experiments were conducted.

3. Experiments

3.1. Electroplating experiments

The system of buoyancy-driven convection used in
the present experiments is that of the electrochemical
redox reaction of copper ion in aqueous copper sulfate

solution. This system has been widely used in studying
buoyancy-driven phenomena because copper sulfate
has a reasonable solubility in water at room tempera-

ture. It is chemically stable and does not form soluble
product on the electrode surface. In the present exper-
iments copper plates were used as both the cathode
and the anode. At the cathode the following reduction

reaction occurs:

Cu2� � 2eÿ4Cu

while the following oxidation reaction proceeds at the

anode:

Cu4Cu2� � 2eÿ:

Sulfuric acid was added as a supporting electrolyte to
lessen the electromigration e�ect. Copper was depos-
ited on the cathode electrode and it was dissolved

from the anode one. The cathode reaction is intrinsi-
cally a surface reaction and it causes change in the
electrolyte composition near the surface. A thin layer,
impoverished in copper ions, develops at the cathode

surface and natural convection ¯ow occurs as a density
gradient develops over the bottom cathode on passing
current.

The experimental apparatus is schematized in Fig. 8.
The plastic bath was ®lled with glass balls of 5.1 or 3
mm diameter. The vertical anodic copper plate was 8

cm wide and 9 cm long. The inclined cathodic copper
plate was 5 cm wide and the distance between the elec-
trodes was 10 cm. The backside of each electrode was

stuck on the plastic plate. The glass balls were satu-
rated with the electrolyte that consisted of 0.1 M
CuSO4 solution with 1.5 M H2SO4 as a supporting
electrolyte. The calomel reference electrode was used

to measure the potential di�erence between the electro-
lyte solution and the cathode. The limiting current
densities were measured by a potentiostat (EG&G

PARC, model M263A). Experiments were repeated at
room temperature under various inclination angles
�g � 0±608� and plate lengths of cathode �L � 0:1±8
cm). From the measured limiting current densities the
critical distance x c to mark the onset of instability was
determined. x c ranged from 2 to 8 mm, depending
on g:

3.2. Determination of physical properties

The density and viscosity of ¯uid were calculated by

using the correlations of Fenech and Tobias [25]. The
measured porosity value e was 0.42 for dp � 5:1 mm
and 0.40 for dp � 3 mm. With these values, the For-

Fig. 8. Schematic diagram of present experimental system.

Fig. 7. E�ect of inclination angle g on Rax, c for �BRad � 1:
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chheimer constant b was calculated by using Eq. (10).
The permeabilities of the present porous systems were

measured from the experiments using Darcy's law. For
these experiments the ®xed bed was built of randomly
packed glass spheres placed in a cylindrical plastic con-

tainer and two sensors of a manometer were positioned
at the center of the cylinder. The measured per-
meability K was 3:812� 10ÿ8 m2 for dp � 5:1 mm and

1:125� 10ÿ8 m2 for dp � 3 mm from the relation of
K � mVd=�ADp�: m, V, d, A and Dp denote the viscosity
of water, the volumetric ¯ow rate, the distance between

two sensors of the manometer, the cross-sectional area
of the plastic container and the pressure drop, respect-
ively. These values agreed well with those from Eq.
(5).

The e�ective molecular mass di�usivities were
measured by chronoamperometry [26]. For these ex-
periments two horizontal electrodes were used and ex-

periments were conducted at an initially quiescent
conditions (cathode facing downward). In chronoam-
perometry the variation of the current density with

time t is measured. When the current density is plotted
against 1=t1=2, the e�ective molecular mass di�usivity
can be calculated from the slope of the straight line.

The related experimental results are plotted in Fig. 9.
The measured D0-value was 4:033� 10ÿ6 cm2/s for
dp � 5:1 mm and 3:057� 10ÿ6 cm2/s for dp � 3 mm.
That of pure solution was 5:786� 10ÿ6 cm2/s. At

228C, its value is 5:554� 10ÿ6 cm2/s from the corre-
lation of Fenech and Tobias [25]. The measured values
of the e�ective molecular di�usivity under no motion

�D0� and the permeability (K ) were used in calculating
the parameters. It is very di�cult to know D0 or a0 in

actual systems. But here the direct measurement of D0

made it more reliable to compare predictions with ex-

perimental results.

3.3. Results and comparison

The typical limiting current density curve is shown
in Fig. 10. On increasing the applied potential di�er-

ence slowly, the current at ®rst increases rapidly and
then reaches a saturation level as is evidenced by a cur-
rent `plateau'. Only upon relatively higher increase of

the applied potential, the current rises appreciably
again. At this stage, the hydrogen ions take part in
electrochemical reaction and hydrogen gas bubbles

evolve. The point at which an increase in potential
di�erence causes almost no increase in current density
is known as the limiting current density. Under the

limiting current condition the average mass transfer
coe�cient hL equivalent to the average heat transfer
coe�cient over the plate length L can be obtained
from the relation of

hL � Ilim�1ÿ tn �
CbnF

�45�

where tn is the transference number which explains the
migration e�ect. Ilim, n, F and Cb denote the limiting
current density, the valence of the transferred ion,

Faraday's constant and the bulk concentration of the
transferred ion, respectively. Then, the average Sher-
wood number ShL based on �Cb ÿ Cs� with the concen-
tration at the cathode surface Cs � 0 can be expressed

as:

Fig. 10. Typical curve of current density vs. potential.Fig. 9. Current density vs. inverse of the square root of time.
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ShL � hLL

D0
� Ilim�1ÿ tn �L

CbD0nF
�46�

where L is the length of the cathode electrode.

In the primary ¯ow of stable natural convection the
average Sherwood number Sh0 can be obtained by
averaging the local Nusselt number of Eq. (13) since an

analogy between mass transfer and heat transfer exists:

Sh0 � ÿ2
�
1� �BRadf

0�0�
�
y 00�0��RaLcos g�1=2 �47�

where the Darcy±Rayleigh number RaL ��
gKLDr=�D0nrb�� and the Grashof number Gr ��
gbK 2Dr=�n2rb�� are de®ned, based on the density

di�erence Dr �� rb ÿ rs�: rb denotes the bulk density
and rs the surface density. With B � 0 the above ShL-
value is well represented by

Sh0 � 0:8876
ÿ
1� 0:73�Gr cosg�0:735

�ÿ0:34�RaL cosg�1=2
�48�

which constitutes the minimum bound, as shown in
Fig. 11. Eq. (47) with �B � 0:0069 agrees well with the

experimental data of the primary ¯ow but it disagrees
with data points after instability sets in. In the present
mass transfer system the �BRad-value is 2.97 for dp �
5:1 mm and 1.53 for dp � 3 mm.
The thermal dispersion constant B increases with

increasing inclination angle g with a ®xed �B: In this
primary convection regime of experiments the bound-

ary-layer thickness are so small because x c < 1 cm.
With dp � 3 mm and g � 408, the thermal boundary-
layer thickness is estimated to be 2.3 mm, the hydro-

dynamic one to be 9.4 mm, and the critical wave

length to be 3.8 mm at x c15:2 mm (see Fig. 11).
Therefore, in the present experimental range �B involves

both inhomogeneity and channeling e�ects near the
wall. Because the channeling e�ect is not so large, Sh0
seems to be still almost proportional to �RaL cos g�1=2:
Hong et al. [15] reported that the thermal enhancement
due to the wall-channeling e�ect is largely reduced
because of both wall and inertia e�ects. Also, Renken

and Poulikakos [27] showed that in experiments of
laminar forced-convection heat transfer with dp � 3
mm non-Darcian e�ects become insigni®cant for

x=
����
K
p

< 1000 with Rep < 30: Rep denotes the Rey-
nolds number having the length scale dp: Based on the
average velocity, it is estimated that for the present
system of dp � 3 mm and g � 408, Rep � 12:7 and

x=
����
K
p � 49 at x c: Therefore the basic state of present

experiments may exclude variable porosity e�ects to a
certain degree like the work of Vafai and Tien [28].

As the bottom plate length L increases, Sh0 begins
to deviate from Eq. (47). The deviation point was
taken as the critical position x c to mark the onset of

the secondary ¯ow due to the unstable condition.
Rax, c determined from the experiments for various in-
clination angles are compared with the predicted

Rax, c-values in Fig. 12. The former values listed in
Table 3 are a little higher than predictions from Eq.
(44) for gr258: Once instabilities set in, their growing
distance will be required until manifest vortex ¯ows

are detected experimentally. Thus it may be stated that
the present predictions constitute a minimum bound.
But in the range of gR208 the measured value is smal-

ler than the prediction and therefore, the present pre-

Fig. 11. Comparison of mass transfer correlation with exper-

imental data with �B � 0:0069:
Fig. 12. Comparison of critical condition with experimental

data.
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dictions are useful for gr258: This is because for small
g the T±S wave instability sets in faster than the regu-

lar vortex instability. In g � 08 the instability will be
characterized by the time-dependent T±S wave only.
The Rax, c-values predicted from the experimental

values of Gr and �B are lower than Darcian case of
Gr � B � 0 (see Fig. 6). In the present experimental
range the e�ects of B and Gr on x c are not so signi®-

cant, as mentioned before.
In an initially quiescent, horizontal porous layer

Byun et al. [29] showed that the variable porosity and

the larger particle bring destabilizing in the inhomo-
geneous system. As mentioned before, the inertia e�ect
makes the system stable. The present predictions fol-
low these behaviors for Gr > 1, but under the present

experimental conditions of Gr < 1 and �BRad > 1:5 it is
shown that the system of a smaller diameter, i.e. a
smaller �BRad-value, is more unstable, as illustrated in

Fig. 6. Even though the di�erence between the present
two particle-size systems is small, these trends are seen
in Fig. 12. Also, it is mentioned that the present mass

transfer systems are analogous to those of heat transfer
for the case of zero solid conductivity.
For 30RShLR400 the experimental ShL-values were

correlated with

ShL
Sh0
�
"
1�

�
Sh1
Sh0

�n
#1=n

for RaLrRax, c �49a�

Sh1 � A
ÿ
RaL ÿ Rax, c

� �49b�

where Sh1 represents thermal enhancement by the sec-

ondary ¯ow. The exponent having the integer n was
tested with n � 1±6: The experimental data points
were well ®tted with n � 2 for 08RgR208 and with

n � 3 for 308RgR608: This di�erence between these
two n-values may be caused by the di�erent secondary
¯ow behavior, i.e. T±S wave vs. longitudinal vortex
¯ow. The A-values ®tted to the experimental data of

ShLr100 are listed in Table 3. The A-value increases

slightly with increasing g: For this purpose the Rax, c-
value in Eq. (49b) was obtained from Eq. (44) for

gr308 and for gR208 it was estimated by dividing the
experimental value by 1.78. This factor is the averaged
ratio of the measured to the predicted Rax, c, as is seen

in Fig. 12. With these A-values, ShL represents the ex-
perimental results well.
With the A-value averaged for gR208 Eq. (49) of

n � 2 is compared with the experimental data in
Fig. 13. It is supposed that for RaL > 1000 turbulent
¯ow exists due to the T-S waves. For gr308 the aver-

age A-value is a little higher than that of gR208: This
represents that the longitudinal vortex roll enhances
the heat transfer more than the T-S wave does. In
Fig. 14 Eq. (49) of n � 3 is compared with the exper-

imental data of 308RgR608 for dp � 5:1 mm. With
A � 0:0540, the agreement looks good and that of
dp � 3 mm also agrees well (compare A-values in

Table 3). With longitudinal vortex rolls of 1000 <
RaL < 7000 the ¯ow seems to be almost laminar
because Rep � O�10� in the present experiments.

Seguine et al. [30] reported that in forced convection
the turbulent region exists for Rep > 180:
For 08RgR608, the dp-e�ect seems signi®cant and

ShL=Sh0 of dp � 3 mm is higher than that of dp � 5:1
mm for RaLr1000: This may mean that �BRad-e�ect in
Eq. (47), i.e. the transverse thermal dispersion is still
dominant like the primary laminar ¯ow, as shown in

Fig. 11. With the secondary longitudinal vortex ¯ow,
the e�ect of primary ¯ow on ShL will be weakened
(see Eq. (49a)) and the thermal dispersion will become

3D. Therefore the g-e�ect on ShL may become insignif-
icant in fully-developed state of extremely large RaL

Fig. 13. Sherwood number vs. Darcy±Rayleigh number with

A � 0:0431 for g � 08 and 208.

Table 3

Experimental Rax, c and A ®tted to each set of data points for

a given g in Eq. (49)

dp 5.1 mm 3 mm

g (8) Rax, c A Rax, c A

0 601 0.0392 455 0.0454

20 770 0.0438 660 0.0440

30 660 0.0520 599 0.0481

40 330 0.0542 288 0.0544

50 212 0.0550 205 0.0585

60 169 0.0560 ± ±
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and Eq. (49b) may be possible. Even in the case of
simple horizontal porous layers, Yoon and Choi [31]
showed that the NuL-correlation depends strongly on

bK/L in addition to RaL and Gr. With increasing RaL
the transport mechanism becomes very much compli-
cated. In this connection more re®ned experiments and

theory are required. It is stressed that Eq. (49) should
be used for ShLR400:

4. Conclusions

The condition of the onset of regular longitudinal
vortex rolls in natural convection ¯ow over an inclined

impermeable surface in a porous medium was analyzed
theoretically and experimentally. For 258RgR608 the
stability analysis involving inertia and dispersion e�ects

was conducted by modifying Forchheimer's model
under the propagation theory which we have devel-
oped. The inertia e�ect makes the system more stable

and for Gr > 1 the thermal dispersion e�ect more un-
stable. But for Gr < 1 the dispersion e�ect makes the
system either more stable or more unstable depending
on the �BRad-value. With increasing g the system

becomes more unstable. To support the present predic-
tions, experiments of electrochemical ionic mass trans-
fer were conducted for 50RRaLR7000 and

7RShLR400: Predictions resulting from the measured
permeability and mass di�usivity represented exper-
imental data reasonably well for gr208: For

0RgR608 new ShL-correlations were proposed as a
function of Sh0, Rax, c and RaL:
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